If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+24x-1140=0
a = 1; b = 24; c = -1140;
Δ = b2-4ac
Δ = 242-4·1·(-1140)
Δ = 5136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5136}=\sqrt{16*321}=\sqrt{16}*\sqrt{321}=4\sqrt{321}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-4\sqrt{321}}{2*1}=\frac{-24-4\sqrt{321}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+4\sqrt{321}}{2*1}=\frac{-24+4\sqrt{321}}{2} $
| 7x(+6)=77 | | F(x)=3x^+5x+6 | | 15v-3v+29=5v-27 | | 7*x=9 | | 2(x-2)=-2x+28 | | 5(x-5)+7=-23 | | -3x+4=2x-9 | | 7x+4=x+8 | | 15=3y+7.y= | | 14–4x2÷4= | | 42=3(x+7) | | 8*5*x=80 | | 14y-3=2y+25 | | 42=4(y+7) | | 3*(x-1)=2x+3 | | 7*3*x=126 | | 3*(x+2)=-24 | | 2*(2x+5)-9=2x-7 | | x+26=3x+24 | | 7*x+8=3*x+17 | | x/7+3=-8 | | 41-9y=-31 | | 10x-225=55 | | 6e+8=4e+2* | | 3x-111=33 | | -58=7(x | | 2x=35=12x-85 | | 5x-59=276 | | x-55=13 | | -x-17=11 | | x+100=190 | | 11x-444=414 |